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Abstract: 

The reaction history (gamma-flux observable) is mathematically studied by using the 
chain rule for taking the total-time derivatives. That is, the total time-derivative of 
flux is written as the product of the ion temperature derivative with respect to time 
and the derivative of the flux with respect to ion temperature. Some equations are 
derived using the further simplification that the fusion reactivity is a parametrized 
function of ion temperature, T. Deuterium-tritium (D-T) fusion is used as the 
application with reactivity calculations from three established reactivity 
parametrizations. 

 
Introduction 
We begin with the definition for alpha as the logarithmic time-derivative of flux:  
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The observable gamma-flux is denoted as γ-dot (or flux) for flux of gammas from fusion. 
All notation listed as “dot” is a derivative with respect to time. All notation listed as 
“prime” is a derivative with respect to ion temperature T. The fusion reactant ion 
temperature is denoted T in keV. In this paper, the chain rule is applied to study the total-
time-derivative of flux in Eq. 1. Use of the chain rule gives a simple relationship for flux-
change with respect to time: it is the product of the temperature time-derivative, T-dot, 
and flux change with T: 

     (2) 

 
This approach is used for understanding the sensitivity of alpha, α, to temperature 
regimes and extrema, where  

      (3) 

 
The gamma-flux is related to the fusion reactivity, <σν(Τ)>: 
 

     (4) 
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where Dn and Tn are number densities (cm-3), velocity v (cm/sec), σ cross section (cm2) 
and volume V containing the D-T fusion reactants at temperature T. 
 
 
Alpha Derivatives Development 
Substituting Eq. (4) into Eq. (1) produces 
 

ln( ( ) )( ) D T DTd n n v T Vt
dt
σα < >

= ,    (5) 

 
or equivalently 
 

              ln( ) ln( ) ln(V) ln( ( ) )( ) D Td n d n d d v Tt
dt dt dt dt

σα < >
= + + + .  (6) 

 
Using the “dot” notation, Eq. (6) becomes: 
 

              .    (7) 

 
 
Now consider the event that the first three terms in Eq. (7) can be neglected compared to 
the last term, such that 
 

              .    (8) 

 
Eq. (8) is not an unreasonable comparison because of the inverse relationship between 
volume, V, and total number density. With that inverse relationship, the right side of Eq. 
(8) is small. 
 
Under the condition in Eq. (8) and applying the chain rule, α(t) is expressed as: 
 

               .     (9) 

 
The meaning of Eq. (9) is that when the logarithmic time-derivative of the number 
densities and volume can be neglected, then the alpha, for some temperature domain, 
depends on the product of the rate of temperature change and the temperature-derivative 
of the reactivity divided by the reactivity. Comparing right side definition of alpha in Eq. 
(2) to Eq. (9) gives an expression of the gamma-flux derivative in terms of this product.  
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        (10) 

The implication of Eq. (10) is that the gamma-flux represents the reactivity under the 
condition Eq. (8). Even if that condition does not hold, then gamma-flux is at least 
proportional to the reactivity [1].   
 
A direct measurement of gamma-rays with equipment that exhibits fast temporal 
response can be used to infer temperature change T-dot, if alpha can be measured. If 
alpha itself can be differentiated, (high signal-to-noise, high bandpass), then the 
following expressions in terms of function f, where f(T) represents the reactivity, can be 
produced.  For example, DTf = ( ) DTv Tσ< > . 
 
The time-derivative of alpha from Eq. (1) is expressed as a function of temperature-
derivatives of f and Eq. (10) as: 

                                                  (11a) 

or using the prime notation for designation of temperature-derivatives: 

                                                   (11b) 

 
It can be noted that Eq. (11) can be written in terms of α(t) and α(t) squared: 
 

                                     (12) 

or 

                                  (13) 

 
 
Reactivity Parameterizations 
Langenbrunner and Makaruk [1] found derivatives with respect to ion temperature, T, for 
D-T fusion reactivity found in the U.S. Naval Research Lab (NRL) [2] formulary. The 
present work uses the NRL parameterization of reactivity in comparison to two other 
commonly established parameterizations of reactivity from Caughlan & Fowler (C&F) 
[3] and Bosch & Hale (B&H) [4]. The D-T fusion reactivity, = , is a 
function of T at low energy (T < 25 keV) and is averaged over a Maxwellian velocity 
distribution.  
 
The NRL reactivity parameterization [2] is  
 



 4 

                                     (14) 
 
For the D-T fusion reaction, the parameters are A=19.94 and A0=3.68 x 10-12. Reactivity 
has units of cm3 sec-1. Langenbrunner and Booker verified other fusion parameterizations 
[5].  
 
The Caughlan & Fowler original parameterization [3] is given as a reaction rate (RR): 
 

                  (15) 
 

where NA is Avogadro’s number, and where temperature T9 is in units of a billion 
degrees Kelvin.  This RR parameterization and the use of T9 are the convention for stellar 
nucleosynthesis. 

 

  (16) 

 
For the D-T fusion reaction, the C&F parameters are B0=8.09x1010, B1=-4.524, B2=0.120, 
B3=0.092, B4=1.80, B5=1.16, B6=10.52, B7=17.24, B8=8.73x108 and B9=-0.523. The 
conversion between T9 and T(keV) is T9=0.0116T.  
 
The Bosch & Hale parameterization [4] is their 1992 revision: 
 

 

where  and .   (17) 

 
For the D-T fusion reaction, the B&H parameters are C0=34.3827, C1=1.17 x 10-9, 
C2=1.51 x 10-2, C3=7.52 x 10-2, C4=4.61 x 10-3, C5=1.35 x 10-2, C6=-1.07 x 10-4, and 
C7=1.37 x 10-5. This parameterization was chosen because it was found to provide best 
reactivity values among the set examined in [5], which included comparison to data. Its 
major disadvantage is the complicated structure for taking higher order derivatives with 
respect to T.   
 
The temperature-derivatives for these three reactivity parameterizations, Eq. (14), (16) 
and (17), are given in the Appendix.   
 
 
Alpha Derivatives Investigation  
Eq. (11) can be rewritten to emphasize the temperature derivatives of reactivity: 
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               .           (18) 

 
It appears clear that the temperature-derivatives of the fusion reactivity could play an 
important role in the shape of α(t), as do the time-derivatives of temperature. Graphic 
exploration of the behavior of the temperature-derivatives in Eq. (18) is provided in the 
figures below. Three reactivity parameterizations, NRL, B&H, and C&F, are compared in 
these temperature-derivative terms.   
 

To investigate where 0d
dt
α
= , Eq. (18) can be rearranged to give the condition for an 

extremum as two ratios of derivatives: 

         .     (19) 

 
The reactivity temperature-derivatives ratio on the left-hand-side (lhs) of Eq. (19) is 
known and available for all the fusion reactivity parameterizations, NRL, B&H, and C&F 
[2, 3, 4]. Understanding this ratio of temperature-derivatives is, in fact, the reason for the 
investigations done in [1, 5].  
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Figure 1. Left-hand-side (lhs) ratio in Eq. (19) with T for three D-T reactivity 
parameterizations— NRL (green), C&F (blue), B&H (red). 
 
Figure 1 shows the behavior of this lhs in Eq. (19) for the NRL (green), C&F (blue), 
B&H (red) [2, 3, 4] reactivity parameterizations on a low T scale 0.2 < T < 5 keV. The 
C&F and B&H values are so close that they appear as purple (red plus blue), and are 
larger than for NRL at T < 1 keV. C&F crosses beneath the NRL and B&H at T = 3 kev 
and fluctuates around B&H beyond that. While not shown, the asymptotic trailing off for 
all three parameterizations continues into larger values of T < 30 keV.  
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 Figure 2. f ’/ f with T, the  term in Eq. (19)—NRL (green), B&H (red), and C&F 
(blue). 
 
The term multiplying the  term in Eq. (18) is the ratio of the first temperature-
derivative to the reactivity and is shown in Figure 2 for the three parameterizations. 
Again, NRL (green), B&H (red), and C&F (blue) reactivity f parameterizations are 
illustrated on a low T scale 0.2 < T < 5 keV. All three parameterizations appear to be 
identical; however, there are differences in the first decimal place which cannot be 
resolved in the figure.  This alignment is not unexpected because this term acts like a 
standardization of the first derivative scaled by the reactivity, minimizing any difference 
in reactivity parameterization. We intend to take up this point in a future publication. 
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Figure 3. [ f ’/ f ]2 on a log scale with longer T scale and log vertical scale to display 
differences—NRL (green), B&H (red), and C&F (blue). 
 
Figure 3 shows the squared values plotted in Figure 2, which corresponds to the negative 
portion of the  term in Eq. (18). It is also the first term in the lhs of Eq. (19). This term 
also behaves as a standardization, resulting in all three parameterizations aligning at T < 5 
keV. Note that the vertical scale is on a logarithmic scale. While not shown in Figure 3, 
the larger T values show some separation of the three reactivity parameterizations.  
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Figure 4. f ’’/f on a log scale with T shows separation of NRL—NRL (green), B&H (red), 
and C&F (blue). 
 
The positive portion of the  term in Eq. (18) is shown in Figure 4.  While one might 
expect the standardization effect seen in Figure 2, the second derivative exhibits more 
nonlinear behavior even when divided by reactivity. The vertical scale is on a logarithmic 
scale. As with Figure 1, NRL separates somewhat from the others. As with Figure 3, 
there is some separation among the three parameterizations with higher T values. That 
separation becomes more prominent at higher values of T than shown.  
 
 
 
 



 10 

 

Figure 5. f ’’ / f ’ on a log scale with T—NRL (green), B&H (red), and C&F (blue). 
 
Figure 5 is the second term (negative term) in the lhs of Eq. (19). Because it is the ratio of 
the second derivative to the first derivative, one might expect this to behave like the ratio 
of the first derivative to the reacitivity—like a standardization.  However, NRL separates 
out, being higher for T < 1 and lower for T > 2 keV. In addition, Figure 5 looks similar to 
Figure 4, with the second derivative dominating. The vertical scale is on a logarithmic 
scale. 
 
Final Thoughts 
The figures demonstrate that the C&F and B&H reactivity parameterizations behave 
similarly for the terms in Eqs. (18-19). The differences in some terms for NRL at low 
temperatures makes its less viable because of the low temperature regimes typically 
found in experiments. The next step is to utilize experimental data to study the 
temperature with time function and corresponding derivatives. This will complete the 
exploration of the alpha derivative and its extremum values.   
 
 
References 
 
[1] J.R. Langenbrunner, H.E. Makaruk, “Temperature Derivatives for Fusion Reactivity 
of D-D and D-T,” Los Alamos National Laboratory report, LA-UR-16-29065, Jan. 2016 
 



 11 

[2] J.D. Huba, NRL Plasma Formulary, Naval Research Laboratory, NRL/PU/6790-
040447, Revised 2004 
 
[3] G.R. Caughlan, W.A. Fowler, “Thermonuclear Reaction Rates V”, Atomic and 
Nuclear Data Tables, 40, pp. 283-334, Academic Press, 1988, Tables I, II and III 
 
[4] H.S. Bosch, G.M. Hale “Improved Formulas for Fusion Cross-sections and Thermal 
Reactivities” Nuclear Fusion, Vol. 32 No. 4, 1992, pp. 611-631 
 
[5] J. R. Langenbrunner, J.M. Booker, “Analytic, empirical and delta method temperature 
derivative of D-D and D-T fusion reactivity formulations, as a means of verification,” 
Los Alamos National Laboratory report, LA-UR-17-26143, July, 2017 
 
 
APPENDIX 
Temperature-derivatives for the three parameterizations 
 
The analytical derivatives of reactivity with temperature for the NRL parameterization, 
Eq. (14), are relatively easy to determine. The first derivative is: 
 

 

 
and the second derivative is: 

 

 
The B&H parameterization, Eq. (17), is complicated for finding first and second 
analytical derivatives with T. For simplification, the first derivative is expressed in terms 
of reactivity, θ, ξ, dθ/dT and dξ/dT: 
 

       

where  

. 

 
Because the first derivative is so complicated, making the second derivative even more 
difficult, the second derivative is obtained by taking the difference between the first 
derivative values divided by the difference between their T values—∆{df/dT}/∆T. This 
was shown to be a good approximation of the second derivative in [5]. 
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The C&F f parameterization is also difficult for determining its analytical second 
derivative.  The difference method used for B&H was also employed here.  The first 
derivative of the reaction rate, RR, and T9 in Eq. (15) and Eq. (16) is: 
 

              

To calculate df/dT from dRR/dT9 requires the following transformation and chain rule: 
 

 

and 

 

 
where dT9/dT =0.0116. Thus the analytical derivative above is divided by NA and 
multiplied by 0.01106. 


